On certain subclasses of univalent $p$-harmonic mappings

نویسندگان

  • J. Chen School of Science, Hebei University of Engineering, Handan, Hebei 056038, People's Republic of China
  • J. Qiao Department of Mathematics, Hebei University, Baoding, Hebei 071002, People's Republic of China
  • M. Shi Department of Mathematics, Hebei University, Baoding, Hebei 071002, People's Republic of China
چکیده مقاله:

Inthis paper, the main aim is to introduce the class $mathcal{U}_p(lambda,alpha,beta,k_0)$ of $p$-harmonic mappings togetherwith its subclasses $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p$ and $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p^0$, andinvestigate the properties of the mappings in these classes. First,we give a sufficient condition for mappings to be in $mathcal{U}_p(lambda,alpha,beta,k_0)$ and also the characterization ofmappings in $mathcal {U}_p(lambda,alpha,beta,k_0)capmathcal{T}_p$ for $max{0,frac{lambda-frac{1}{2}}{lambda+1}}leqalphaleq lambda$. Second, we consider the starlikeness ofmappings in $mathcal {U}_p(lambda,alpha,beta,k_0)capmathcal{T}_p^0$ for $max{0,frac{lambda-frac{1}{2}}{lambda+1}}leqalphaleq lambda$. Third, extreme points of $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p$ for$max{0,frac{lambda-frac{1}{2}}{lambda+1}}leq alphaleqlambda$ are found. The support points of $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p$ for$max{0,frac{lambda-frac{1}{2}}{lambda+1}}leq alphaleqlambda$ and convolution of mappings in $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p$ for$max{0,frac{lambda-frac{1}{2}}{lambda+1}}leq alphaleqlambda$ are also discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on certain subclasses of univalent $p$-harmonic mappings

inthis paper, the main aim is to introduce the class $mathcal{u}_p(lambda,alpha,beta,k_0)$ of $p$-harmonic mappings togetherwith its subclasses $mathcal{u}_p(lambda,alpha,beta,k_0)capmathcal {t}_p$ and $mathcal{u}_p(lambda,alpha,beta,k_0)capmathcal {t}_p^0$, andinvestigate the properties of the mappings in these classes. first,we give a sufficient condition for mappings to be in $mathcal{u}_p(l...

متن کامل

A certain convolution approach for subclasses of univalent harmonic functions

In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.  

متن کامل

Stability for certain subclasses of harmonic univalent functions

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.

متن کامل

a certain convolution approach for subclasses of univalent harmonic functions

in the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.

متن کامل

On Certain Class of Harmonic Univalent Functions

Abstract -A complex-valued functions that are univalent and sense preserving in the unit disk U can be written in the form ( ) ( ) ( ) f z h z g z   , where U(z) and g(z) are analytic in. We will introduced the operator D which defined by convolution involving the polylogarithms functions. Using this operator, we introduce the class HP(,, n) by generalized derivative operator of harmonic un...

متن کامل

On Certain Subclasses of Univalent Functions and Radius Properties

Denote by A the class of all functions f , normalized by f(0) = f ′(0) − 1 = 0, that are analytic in the unit disk ∆ = {z ∈ C : |z| < 1}, and by S the subclass of univalent functions in ∆. Denote by S∗ the subclass consisting of functions f in S that are starlike (with respect to origin), i.e., tw ∈ f(∆) whenever t ∈ [0, 1] and w ∈ f(∆). Analytically, f ∈ S∗ if and only if Re (zf ′(z)/f(z)) > 0...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 2

صفحات  429- 451

تاریخ انتشار 2015-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023